Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Intrinsic brain dynamics play a fundamental role in cognitive function, but their development is incompletely understood. We investigated pubertal changes in temporal fluctuations of intrinsic network topologies (focusing on the strongest connections and coordination patterns) and signals, in an early longitudinal sample from the Adolescent Brain Cognitive Development (ABCD) study, with resting-state fMRI (n = 4,099 at baseline; n = 3,376 at follow-up [median age = 10.0 (1.1) and 12.0 (1.1) years; n = 2,116 with both assessments]). Reproducible, inverse associations between low-frequency signal and topological fluctuations were estimated (p < 0.05, β = −0.20 to −0.02, 95% confidence interval (CI) = [−0.23, −0.001]). Signal (but not topological) fluctuations increased in somatomotor and prefrontal areas with pubertal stage (p < 0.03, β = 0.06–0.07, 95% CI = [0.03, 0.11]), but decreased in orbitofrontal, insular, and cingulate cortices, as well as cerebellum, hippocampus, amygdala, and thalamus (p < 0.05, β = −0.09 to −0.03, 95% CI = [−0.15, −0.001]). Higher temporal signal and topological variability in spatially distributed regions were estimated in girls. In racial/ethnic minorities, several associations between signal and topological fluctuations were in the opposite direction of those in the entire sample, suggesting potential racial differences. Our findings indicate that during puberty, intrinsic signal dynamics change significantly in developed and developing brain regions, but their strongest coordination patterns may already be sufficiently developed and remain temporally consistent.more » « less
-
Community detection in the human connectome: Method types, differences and their impact on inferenceAbstract Community structure is a fundamental topological characteristic of optimally organized brain networks. Currently, there is no clear standard or systematic approach for selecting the most appropriate community detection method. Furthermore, the impact of method choice on the accuracy and robustness of estimated communities (and network modularity), as well as method‐dependent relationships between network communities and cognitive and other individual measures, are not well understood. This study analyzed large datasets of real brain networks (estimated from resting‐state fMRI from = 5251 pre/early adolescents in the adolescent brain cognitive development [ABCD] study), and = 5338 synthetic networks with heterogeneous, data‐inspired topologies, with the goal to investigate and compare three classes of community detection methods: (i) modularity maximization‐based (Newman and Louvain), (ii) probabilistic (Bayesian inference within the framework of stochastic block modeling (SBM)), and (iii) geometric (based on graph Ricci flow). Extensive comparisons between methods and their individual accuracy (relative to the ground truth in synthetic networks), and reliability (when applied to multiple fMRI runs from the same brains) suggest that the underlying brain network topology plays a critical role in the accuracy, reliability and agreement of community detection methods. Consistent method (dis)similarities, and their correlations with topological properties, were estimated across fMRI runs. Based on synthetic graphs, most methods performed similarly and had comparable high accuracy only in some topological regimes, specifically those corresponding to developed connectomes with at least quasi‐optimal community organization. In contrast, in densely and/or weakly connected networks with difficult to detect communities, the methods yielded highly dissimilar results, with Bayesian inference within SBM having significantly higher accuracy compared to all others. Associations between method‐specific modularity and demographic, anthropometric, physiological and cognitive parameters showed mostly method invariance but some method dependence as well. Although method sensitivity to different levels of community structure may in part explain method‐dependent associations between modularity estimates and parameters of interest, method dependence also highlights potential issues of reliability and reproducibility. These findings suggest that a probabilistic approach, such as Bayesian inference in the framework of SBM, may provide consistently reliable estimates of community structure across network topologies. In addition, to maximize robustness of biological inferences, identified network communities and their cognitive, behavioral and other correlates should be confirmed with multiple reliable detection methods.more » « less
An official website of the United States government
